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Abstract

Bifurcation analysis of the orthogonal cutting model with cutting force nonlinearity is presented with special attention to double

Hopf bifurcations. The normal form of the system in the vicinity of the double Hopf point is derived analytically by means

of center manifold reduction. The dynamics is restricted to a four-dimensional center manifold, and the long-term behavior is

illustrated on simplified phase portraits in two dimensions. The topology of the phase portraits reveal the coexistence of periodic

and quasi-periodic solutions, which are computed by approximate analytical formulas.
c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

The theory of surface regeneration has been widely used since the 1950’s to explain self-excited vibrations in

metal cutting1,2. According to the theory, the vibrations of the machine tool copy onto the workpiece during cutting

and hence affect the vibrations at the subsequent cut. Therefore, regenerative machine tool vibrations (or machine

tool chatter) can be described by differential equations with time delay. The equations are typically nonlinear due to

nonlinear cutting force expressions3,4,5,6.

It is well-known that time delay often leads to the instability of dynamical systems. In the nonlinear models of

machining (turning), the stability of stationary cutting is lost via Hopf bifurcation. Hopf bifurcation can be investigated

either by analytical methods, such as the center manifold reduction7,8,9 or the method of multiple scales10,11,12, or by

numerical bifurcation analysis13.

At the intersections of the stability boundaries associated with Hopf bifurcation, codimension-two double Hopf

bifurcations take place. Double Hopf bifurcation gives rise to rich dynamics and complex behavior in dynamic

systems14,15,16,17,18,19,20,21,22,23. The double Hopf bifurcation in orthogonal cutting has been analyzed in24 by the

method of multiple scales. Here, we dedicate this paper to the analysis of the double Hopf bifurcation in cutting by

means of center manifold reduction.
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Fig. 1. Single-degree-of-freedom mechanical model of orthogonal cutting (a); the corresponding stability lobe diagram (b).

2. Mechanical model, stability, and bifurcations

Consider the single-degree-of-freedom mechanical model of orthogonal cutting shown in Fig. 1(a). The workpiece

is assumed to be rigid, rotating with dimensionless angular velocityΩ. The tool is assumed to be compliant in the feed

direction, and is modeled by a mass-spring-damper system. The dimensionless equation governing the tool’s motion

relative to the workpiece can be given in the form9

ẍ(t) + 2ζ ẋ(t) + x(t) = w
(

(x(t − τ) − x(t)) + η2 (x(t − τ) − x(t))2 + η3 (x(t − τ) − x(t))3
)
, (1)

where t is the dimensionless time (scaled by the natural angular frequency of the system), x is the dimensionless tool

position (scaled by the feed h0 per revolution), and ζ is the damping ratio. The right-hand side of Eq. (1) yields the

x-directional component of the cutting force variation, which is proportional to the dimensionless chip width w and

is a cubic polynomial of the dimensionless chip thickness variation x(t − τ) − x(t) 3. Parameters η2 and η3 denote

dimensionless quadratic and cubic cutting-force coefficients, whereas τ = 2π/Ω is called regenerative delay, which is

equal to the period of workpiece rotations.

The equivalent first-order representation of the second-order system (1) reads

y′(t) = Ly(t) + Ry(t − τ) + g(yt) . (2)

The vector y of state variables, the linear and retarded coefficient matrices L and R, and the nonlinear term g are

defined by

y(t) =
[

x(t)
ẋ(t)

]
, L =

[
0 1

−(1 + w) −2ζ

]
, R =

[
0 0

w 0

]
, g(yt) =

[
0

w
(
η2 (y1(t − τ) − y1(t))2 + η3 (y1(t − τ) − y1(t))3

) ], (3)

where subscript 1 refers to the first component of a vector, y1(t) = x(t).

2.1. Hopf bifurcation

The equilibrium x(t) ≡ 0 of Eq. (1) corresponds to stationary cutting with uniform prescribed chip thickness h0.

Machine tool vibrations are associated with the loss of stability of this equilibrium. The linear stability of the solution

x(t) ≡ 0 is determined by the real part of the characteristic exponents of system (2), which are the roots of the

characteristic equation

D(λ) = det
(
λI − L − Re−λτ

)
= λ2 + 2ζλ + 1 + w

(
1 − e−λτ

)
= 0 . (4)

The equilibrium related to stationary cutting is linearly stable provided that all the infinitely many characteristic

exponents are located in the left half of the complex plane. Along the stability boundaries of the system, a pair of
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complex conjugate characteristic exponents λ = ±iω (i2 = −1, ω ≤ 0) lies on the imaginary axis. Correspondingly,

the real and imaginary parts of D(iω) = 0 give the stability boundaries (or stability lobes) in the form9

wH(ω) =

(
ω2 − 1

)2
+ 4ζ2ω2

2
(
ω2 − 1

) , τH( j, ω) =
2

ω

(
jπ − arctan

(
ω2 − 1

2ζω

))
, ΩH( j, ω) =

2π

τH( j, ω)
, (5)

where j ∈ Z is the lobe number. The stability boundaries are often depicted in the plane (Ω,w) of the angular velocity

and the chip width, resulting in so-called stability lobe diagrams, see Fig. 1(b) for ζ = 0.02.

Along the stability boundaries (5), a Hopf bifurcation takes place – note that a fold bifurcation cannot happen in

system (1). For the analysis of the Hopf bifurcation, the reader is referred to8,9,11,12. According to9, the sense of

the Hopf bifurcation is subcritical at each point of the stability lobes (5) for real-life cutting-force parameters η2, η3.

The subcritical Hopf bifurcation gives rise to an unstable periodic solution in the vicinity of the equilibrium. The

approximate angular frequency of the periodic solution is ω.

2.2. Double Hopf bifurcation

Hereinafter we use previous results9 for the Hopf bifurcation, and extend them to analyze the double Hopf bifurca-

tion in system (1). According to Fig. 1(b), the stability boundaries associated with Hopf bifurcation intersect at some

points. At the intersection point of two lobes with lobe numbers j1 and j2, two periodic solutions are born simultane-

ously with angular frequencies ω1 and ω2, respectively. In such points, a double Hopf bifurcation takes place, which

even gives rise to a quasi-periodic solution with two angular frequencies ω1 and ω2
25. The double Hopf bifurcation

points and the two angular frequencies are given by wdH = wH(ω1) = wH(ω2) and ΩdH = ΩH(ω1) = ΩH(ω2) and

Eq. (5).

In what follows, we analyze the double Hopf bifurcation by determining the normal form of the system by means

of center manifold reduction, in order to find approximate expressions for the arising periodic and quasi-periodic

solutions. We choose Ω and w as bifurcation parameters for the analysis of this codimension-two bifurcation.

3. Center manifold reduction and normal form calculations

The normal form of system (1) in the vicinity of the double Hopf bifurcation point (ΩdH,wdH) can be determined

by means of the method of multiple scales24, or by means of center manifold reduction. Here, we use the latter for

normal form analysis. The theory of center manifold reduction is discussed in7, whereas its application to Hopf and

double Hopf bifurcations can be found for example in8,9,14,17,18,21,22.

The main idea behind center manifold reduction is the following. The phase space of the time-delay system (1)

is infinite-dimensional, as it has infinitely many characteristic exponents satisfying Eq. (4). At the double Hopf

bifurcation point, four characteristic exponents ±iω1,2 are located on the imaginary axis, while the other infinitely

many exponents lie in the left-half plane. Therefore, in the vicinity of the double Hopf bifurcation, there exists a four-

dimensional center manifold embedded in the infinite-dimensional phase space, which attracts the solutions of the

time-delay system. The flow on this center manifold determines the long-term dynamics of the system. The long-term

behavior can be investigated by restricting the dynamics to the four-dimensional center manifold, and analyzing a four-

dimensional system of ordinary differential equations instead of the infinite-dimensional delay-differential equation.

3.1. Restriction to the center manifold

The restriction to the center manifold can be done according to the decomposition theorem in Chapter 7.3 of the

book by Hale7. In order to carry out the decomposition, we rewrite Eq. (2) in operator differential equation form

ẏt(θ) =
(Ayt
)

(θ) +
(F (yt)

)
(θ) , (6)

where yt ∈ H : [−τ, 0] → R
2, yt(θ) = y(t + θ) is the state of the system in the Hilbert space H of continuously

differentiable vector-valued functions. The linear and the nonlinear operatorsA,F : H → H are defined by

(Au) (θ) =

⎧⎪⎪⎨⎪⎪⎩u
′(θ) if θ ∈ [−τ, 0) ,

Lu(0) + Ru(−τ) if θ = 0 ,
(F (u)) (θ) =

{
0 if θ ∈ [−τ, 0) ,
g(u) if θ = 0 .

(7)
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Furthermore, we introduce operator A∗ : H∗ → H∗, which is formally adjoint to operator A relative to a certain

bilinear form. The formal adjoint satisfies (v,Au) = (A∗v, u) for any pair of u ∈ H : [−τ, 0] → R
2 and v ∈ H∗ :

[0, τ]→ R
2, whereH∗ is the adjoint space, and operation ( , ) : H∗ ×H → R indicates a bilinear form. According to

Eqs. (3.1) and (3.3) in Chapter 7.3 of Hale’s book7, the definition of the formal adjoint and the bilinear form become

(A∗v) (ϕ) =

⎧⎪⎪⎨⎪⎪⎩
−v′(ϕ) if ϕ ∈ (0, τ] ,

LHv(0) + RHv(τ) if ϕ = 0 ,
(u, v) = uH(0)v(0) +

∫ τ
0

uH(ϕ)Rv(ϕ − τ)dϕ , (8)

where the superscript H of R, L, and u refers to conjugate transpose.

The four-dimensional center manifold is tangent to the eigenfunctions (infinite-dimensional eigenvectors) sk(θ) and

sk
(θ) (k = 1, 2) of operator A at (ΩdH,wdH). Whereas restriction to the center manifold can be performed using the

eigenfunctions nk(ϕ) and nk
(ϕ) (k = 1, 2) of operatorA∗ at (ΩdH,wdH). The eigenfunctions are defined by(

Ask
)

(θ) = iωksk(θ) ,
(
Ask
)

(θ) = −iωksk
(θ) , (9)(

A∗nk
)

(ϕ) = −iωknk(ϕ) ,
(
A∗nk

)
(ϕ) = iωknk

(ϕ) , (10)

where over-bar denotes complex conjugate. After solving the boundary value problems (9) and (10), the eigenfunc-

tions are obtained in the form sk(θ) = sk
R

(θ) + isk
I
(θ), nk(ϕ) = nk

R
(ϕ) + ink

R
(ϕ),

sk
R(θ) =

[
cos(ωkθ)
−ωk sin(ωkθ)

]
, nk

R(ϕ) =
2

p2
k+q2

k

[
(2ζpk + ωkqk) cos(ωkϕ)+(ωk pk − 2ζqk) sin(ωkϕ)

pk cos(ωkϕ) − qk sin(ωkϕ)

]
,

sk
I (θ) =

[
sin(ωkθ)
ωk cos(ωkθ)

]
, nk

I (ϕ) =
2

p2
k+q2

k

[
(−ωk pk+2ζqk) cos(ωkϕ)+(2ζpk+ωkqk) sin(ωkϕ)

qk cos(ωkϕ) + pk sin(ωkϕ)

]
,

(11)

where the constants pk and qk are given by Eq. (A.1) in Appendix A. Note that the eigenfunctions satisfy the

orthonormality conditions (n1
R, s

1
R) = 1, (n1

R, s
1
I ) = 0, (n2

R, s
2
R) = 1, and (n2

R, s
2
I ) = 0.

Using these eigenfunctions and the decomposition theorem in Hale’s book7, the phase space of the time-delay

system (6) can be decomposed into stable and center subspaces as

yt(θ) = z1(t)s1
R(θ) + z2(t)s1

I (θ) + z3(t)s2
R(θ) + z4(t)s2

I (θ) + ytn(θ) , (12)

where z1(t), z2(t), z3(t) and z4(t) are coordinates aligned with the center manifold that describe the long-term dynamics

of the time-delay system (1), while ytn(θ) represents the infinite-dimensional stable subsystem transverse to the center

manifold. According to the decomposition theorem, the formulas of these components read

z1(t) = (n1
R, yt) , z2(t) = (n1

I , yt) , z3(t) = (n2
R, yt) , z4(t) = (n2

I , yt) ,

ytn(θ) = yt(θ) − z1(t)s1
R(θ) − z2(t)s1

I (θ) − z3(t)s2
R(θ) − z4(t)s2

I (θ) .
(13)

Differentiating Eq. (13) with respect to time, using Eqs. (6), (12), (9), and omitting the arguments t, θ we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

ẏtn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω1 0 0 O
−ω1 0 0 0 O

0 0 0 ω2 O
0 0 −ω2 0 O
o o o o A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

ytn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1
R2(0)F2(0)

n1
I2(0)F2(0)

n2
R2(0)F2(0)

n2
I2(0)F2(0)

G(yt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G(yt) = F (yt) − F2(0)
(
n1

R2(0)s1
R + n1

I2(0)s1
I + n2

R2(0)s2
R + n2

I2(0)s2
I

)
(14)

where o : R → H is a zero operator, O : H → R is a zero functional, subscript 2 indicates the second component of

vectors, and F2(0) shortly indicates the second component of F (yt) at θ = 0 with Ω = ΩdH and w = wdH. Note that in

Eq. (14), the four-dimensional center subsystem is already decoupled on the linear level from the infinite-dimensional

stable subsystem.
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In order to decouple the nonlinear terms in the equations for z1, z2, z3, z4, the dynamics must be restricted to the

four-dimensional center manifold ytn(θ) = yCM
tn (z1, z2, z3, z4)(θ). Second-order approximation of the center manifold

allows us to decouple the nonlinear terms up to third order in Eq. (14):

yCM
tn (z1, z2, z3, z4)(θ) ≈ 1

2

(
h11(θ)z2

1 + h22(θ)z2
2 + h33(θ)z2

3 + h44(θ)z2
4

+ 2h12(θ)z1z2 + 2h13(θ)z1z3 + 2h14(θ)z1z4 + 2h23(θ)z2z3 + 2h24(θ)z2z4 + 2h34(θ)z3z4

)
, (15)

where the coefficients hmn(θ) (m, n = 1, 2, 3, 4, m ≤ n) can be calculated by solving a boundary value problem defined

by Eqs. (14) and (15). Restricting the dynamics to the center manifold, using the second-order approximation (15)

of the center manifold and the third-order approximation of the nonlinearities in Eq. (14), we get a four-dimensional

decoupled set of ordinary differential equations in the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ż1

ż2

ż3

ż4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω1 0 0

−ω1 0 0 0

0 0 0 ω2

0 0 −ω2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G1(z1, z2, z3, z4)

G2(z1, z2, z3, z4)

G3(z1, z2, z3, z4)

G4(z1, z2, z3, z4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (16)

Here, G1,2,3,4 are functions with purely quadratic and cubic nonlinearities. Hence Eq. (16) gives a third-order approx-

imation of the center subsystem, which is suitable for normal form calculations and bifurcation analysis25.

3.2. Normal form in the vicinity of the double Hopf point

The four-dimensional system (16) can be written in polar form with amplitudes r1, r2 and phase angles θ1, θ2 as25

ṙ1 =μ1r1 + a11r3
1 + a12r1r2

2 , θ̇1 = ω1 + c11r2
1 + c12r2

2 ,

ṙ2 =μ2r2 + a21r2
1r2 + a22r3

2 , θ̇2 = ω2 + c21r2
1 + c22r2

2 ,
(17)

where the constants amn and cmn (m, n = 1, 2) can be obtained by the formulas given in26. Accordingly, periodic and

quasi-periodic orbits arise, which can be approximated by r1 cos(ω1t) + r2 cos(ω2t). In this paper, we focus only on

the amplitude of the arising periodic and quasi-periodic solutions, hence we compute r1 and r2 only, for which the

cubic coefficients amn are listed in Eq. (A.2) of Appendix A. The coefficients μ1 and μ2 of the linear terms are

μ1 = γ11ŵ + γ12Ω̂ , μ2 = γ21ŵ + γ22Ω̂ , (18)

where Ω̂ = Ω − ΩdH and ŵ = w − wdH are the bifurcation parameters shifted to the double Hopf point. Whereas γk1

and γk2 (k = 1, 2) are the root tendencies obtained by implicit differentiation of Eq. (4):

γk1 = Re

(
∂λ

∂w

∣∣∣∣∣
λ=iωk

)
=

pkVk + qkWk

p2
k + q2

k

, γk2 = Re

(
∂λ

∂Ω

∣∣∣∣∣
λ=iωk

)
= wdH

τ2
dH

2π
ωk

qk(Vk + 1) − pkWk

p2
k + q2

k

, (19)

with parameters listed in Eq. (A.1) of Appendix A.

4. Results and discussion

The analysis of the polar-form system (17) can be found in25. Accordingly, the long-term dynamics near the double

Hopf point is determined by the parameters a = a11/|a11|, b = a12/|a22|, c = a21/|a11|, d = a22/|a22|, and A = ad − bc.

The values of the bifurcation parameters, the chatter frequencies, the root tendencies, and the normal form coefficients

at the first five double Hopf bifurcation points are listed in Tab. 1 for η2 = 1.43059 and η3 = 0.738487, which are

dimensionless parameters corresponding to measured cutting-force coefficients3 and feed per revolution h0 = 250 μm.

The coefficients b and c have also been computed numerically by DDE-Biftool13, and they agree with the analytical

results (see bnum, cnum). According to the table, a, b, c, and d are always positive, whereas A > 0 holds for the first



128   Tamás G. Molnár et al.  /  Procedia IUTAM   22  ( 2017 )  123 – 130 

r2

r1

∞

x

x

x

.

b)

0.333 0.335 0.337 0.339
0.0

0.1

0.2

0.3

w

a)

r1

r2

r1

r2

r1

r2

r1

r2

W

r2

r1

r

r2

1

m =02

m =01

m =   m2
c
a 1m =   m2

d
b 1

m2

m1

Fig. 2. Topology of the simplified two-dimensional phase portraits (a); its interpretation in the infinite-dimensional state space (b).

and A < 0 for all other double Hopf points. Based on the coefficients a, b, c, d, A, and the bifurcation parameters Ω,

w, different topologies can be observed in simplified phase portraits depicted in two dimensions along (r1, r2). The

possible topologies are discussed in25. Case Ia of the book by Guckenheimer and Holmes25 applies for the first double

Hopf point, and case Ib for all others.

Fig. 2(a) shows the simplified phase portraits at the third double Hopf point (at the intersection of the third and

the fourth lobe). According to25, the lines μ1 = 0, μ2 = 0 approximate the Hopf lobes (indicated by blue and red),

where periodic solutions are born. In the simplified phase portraits, these periodic solutions are represented by the

equilibrium points (rp

1
, 0) and (0, rp

2
), respectively. Whereas lines μ2 = cμ1/a and μ2 = dμ1/b are the approximations

of torus bifurcation branches (shown by black), where a quasi-periodic solution represented by (rqp

1
, rqp

2
) is born from

one of the periodic solutions ((rp

1
, 0) or (0, rp

2
), respectively). The amplitude of these solutions is given by

rp

1
(ŵ, Ω̂) =

√
−γ11ŵ + γ12Ω̂

a11

, rqp

1
(ŵ, Ω̂) =

√
(a12γ21 − a22γ11) ŵ + (a12γ22 − a22γ12) Ω̂

a11a22 − a12a21

,

rp

2
(ŵ, Ω̂) =

√
−γ21ŵ + γ22Ω̂

a22

, rqp

2
(ŵ, Ω̂) =

√
(a21γ11 − a11γ21) ŵ + (a21γ12 − a11γ22) Ω̂

a11a22 − a12a21

.

(20)

The interpretations of the two-dimensional simplified phase portraits is shown in Fig. 2(b). The equilibria (0, 0),

(rp

1
, 0), (0, rp

2
), and (rqp

1
, rqp

2
) correspond to the trivial equilibrium, to two periodic solutions, and to the quasi-periodic

Table 1. Bifurcation parameters, chatter frequencies, root tendencies, and normal form coefficients at the double Hopf points.

j1 j2 ω1 ω2 ΩdH wdH γ11 γ12 γ21 γ22

1 2 1.00060 1.52994 1.01018 0.671754 0.005553 0.3623 0.2963 −0.6699

2 3 1.00127 1.27729 0.505718 0.317804 0.01294 0.7071 0.3264 −1.006

3 4 1.00189 1.19274 0.337335 0.214010 0.01917 1.000 0.3263 −1.290

4 5 1.00247 1.15031 0.253092 0.164877 0.02429 1.251 0.3182 −1.530

5 6 1.00301 1.12474 0.202528 0.136344 0.02849 1.466 0.3074 −1.736

j1 j2 a11 a12 a21 a22 a b c d A bnum cnum

1 2 8.090×10−6 0.008128 0.0002925 0.4317 1 0.01883 36.16 1 0.3193 0.01883 36.16

2 3 3.980×10−5 0.01280 0.0009766 0.2239 1 0.05716 24.54 1 −0.4026 0.05721 24.51

3 4 8.807×10−5 0.01479 0.001696 0.1500 1 0.09856 19.26 1 −0.8980 0.09855 19.26

4 5 1.460×10−4 0.01560 0.002356 0.1121 1 0.1392 16.14 1 −1.248 0.1392 16.14

5 6 2.089×10−4 0.01586 0.002939 0.08900 1 0.1782 14.07 1 −1.507 0.1782 14.07
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Fig. 3. Bifurcation diagrams near the double Hopf point as a function of the chip width w (a); as a function of the spindle speed Ω (b).

solution, respectively, in the infinite-dimensional phase space of the original time-delay system. For the sake of a

simple illustration, the infinite-dimensional phase portrait is represented by a three-dimensional one in Fig. 2(b) using

axes x, ẋ, and x∞. Here, x∞ stands for the remaining infinite dimensions, and x∞ has no physical meaning, since

it is introduced for illustration purposes only. Therefore, only the qualitative behavior and not the actual (infinite-

dimensional) solutions are shown in the figure.

Finally, Fig. 3 shows the amplitude r = r1 + r2 of the arising periodic and quasi-periodic solutions according to

Eq. (20) as a function of the bifurcation parameters Ω and w. The bifurcation diagrams are computed for Ω = 0.337

and w = 0.15 as shown by the dotted lines in Fig. 2(a). The solutions related to (rp

1
, 0), (0, rp

2
), and (rqp

1
, rqp

2
) are

shown by blue, red, and black colors, respectively. Hopf bifurcations are indicated in Fig. 3(a), where the periodic

solutions are born when decreasing w. A torus bifurcation point can also be seen, where the quasi-periodic solution

is born from the periodic solution related to (0, rp

2
). These bifurcation points are also indicated by dots in Fig. 2(a).

In Fig. 3(b), two torus bifurcation points can be observed. When increasing Ω, the quasi-periodic solution is born

from the periodic solution related to (0, rp

2
), and then it vanishes by colliding with the periodic solution of (rp

1
, 0). Note

that the bifurcation diagrams in Fig. 3 are not valid at large amplitudes due to loss of contact between the tool and

the workpiece. When loss of contact occurs, Eq. (1) becomes no longer valid and the periodic solutions disappear9.

Similarly, we expect the quasi-periodic solution to vanish at loss of contact. Locating the point where the tool loses

contact is out of scope of this paper, but we remark that it has an important role in determining the global stability

boundaries of the equilibrium.
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Appendix A. An example appendix

The auxiliary parameters used in the paper are

V1,2 = cos(ω1,2τdH) − 1 , W1,2 = − sin(ω1,2τdH) , p1,2 = 2ζ + τdH

(
1 + wdH − ω2

1,2

)
, q1,2 = 2ω1,2 (1 + ζτdH) ,

R1,2 = 1 − cos(2ω1,2τdH) , S 1,2 = sin(2ω1,2τdH) , R3,4 = 1 − cos((ω2 ± ω1)τdH) , S 3,4 = sin((ω2 ± ω1)τdH) ,

K1,2 = wR1,2 −
(
4ω2

1,2 − 1
)
, L1,2 = wS 1,2 + 4ζω1,2 , K3,4 = wR3,4 −

(
(ω2 ± ω1)2 − 1

)
, L3,4 = wS 3,4 + 2ζ(ω2 ± ω1) .

(A.1)
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The expressions of the cubic normal form coefficients read

a11 = − 1

2
w2(V2

1 +W2
1 )η2

2

⎛⎜⎜⎜⎜⎝K1R1 + L1S 1

K2
1
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1

p1V1 + q1W1

p2
1
+ q2

1

+
K1S 1 − L1R1

K2
1
+ L2

1

q1V1 − p1W1

p2
1
+ q2

1

⎞⎟⎟⎟⎟⎠ + 3

4
w(V2

1 +W2
1 )η3

p1V1 + q1W1

p2
1
+ q2

1

,

a12 = − w2(V2
2 +W2

2 )η2
2

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝K3R3 + L3S 3

K2
3
+ L2

3

+
K4R4 + L4S 4

K2
4
+ L2

4

⎞⎟⎟⎟⎟⎠ p1V1 + q1W1

p2
1
+ q2

1

+

⎛⎜⎜⎜⎜⎝K3S 3 − L3R3

K2
3
+ L2

3

− K4S 4 − L4R4

K2
4
+ L2

4

⎞⎟⎟⎟⎟⎠ q1V1 − p1W1

p2
1
+ q2

1

⎞⎟⎟⎟⎟⎠ + 3

2
w(V2

2 +W2
2 )η3
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1
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1

,

(A.2)

whereas a21 and a22 can be obtained by interchanging ω1 and ω2 in the formulas of a12 and a11, respectively.
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9. Dombóvári, Z., Wilson, R.E., Stépán, G.. Estimates of the bistable region in metal cutting. P Roy Soc Lond A-Math Phy 2008;464:3255–

3271.

10. Nayfeh, A.H., Mook, D.T.. Nonlinear Oscillations. New York: Wiley; 1979.

11. Nayfeh, A.H.. Order reduction of retarded nonlinear systems – the method of multiple scales versus center-manifold reduction. Nonlinear
Dynam 2008;51(4):483–500.

12. Nandakumar, K., Wahi, P., Chatterjee, A.. Infinite dimensional slow modulations in a well known delayed model for cutting tool vibrations.

Nonlinear Dynam 2010;62(4):705–716.

13. Engelborghs, K., Luzyanina, T., Roose, D.. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM T
Math Software 2002;28(1):1–21.

14. Campbell, S.A., Bélair, J., Ohira, T., Milton, J.. Limit cycles, tori, and complex dynamics in a second-order differential equation with

delayed negative feedback. J Dynam Differential Equations 1995;7(1):213–236.

15. Stépán, G.. Modelling nonlinear regenerative effects in metal cutting. P Roy Soc A-Math Phy 2001;359(1781):739–757.

16. Xu, J., Chung, K.W., Chan, C.L.. An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with

delayed feedbacks. SIAM J Appl Dyn Syst 2007;6(1):29–60.

17. Guo, S., Chen, Y., Wu, J.. Two-parameter bifurcations in a network of two neurons with multiple delays. J Differ Equations 2008;

244(2):444–486.

18. Ma, S., Lu, Q., Feng, Z.. Double Hopf bifurcation for Van der Pol-Duffing oscillator with parametric delay feedback control. J Math Anal
Appl 2008;338(2):993–1007.

19. Wang, W., Xu, J.. Multiple scales analysis for double Hopf bifurcation with 1:3 resonance. Nonlinear Dynam 2011;66(1):39–51.
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